ISOMÉRISATION DE LA BENZALDOXIME—II ANALYSE THÉORIQUE ET EXPÉRIMENTALE DES SPECTRES DE VIBRATION DES ISOMÉRES ISOLÉS

H. SAUVAITRE

Laboratoire de Chimie Structurale associé au C.N.R.S., Faculté des Sciences, 64 Pau, France

(Received in France 8 July 1970; Received in the UK for publication 23 July 1970)

Résanté—Les spectres infrarouge et Raman des isomères syn (α) et anti (β) de la benzaldoxime ont été enregistrès séparément, et une attribution des fréquences observées est proposée à partir de critères expérimentaux et des résultats du calcul des modes normaux de vibration. L'analyse des résultats obtenus apporte une confirmation expérimentale à la chélation précédemment envisagée, pour l'isomère β , entre l'atome d'oxygène fonctionnel et l'atome d'hydrogène le plus proche situé sur le cycle benzénique.

Abstract—Infrared and Raman spectra of geometrical isomers of benzaldoxime have been recorded. Observed frequencies were assigned by experimental criteria and from computation of normal modes. The results give experimental confirmation of the chelation we have previously suggested for the β -form between the functional oxygen atom and the nearest benzenic hydrogen.

INTRODUCTION

Nous avons montré expérimentalement 1 + 12 + 14 qu'un équilibre existait dans différents solvants entre les deux isomères géométriques de la benzaldoxime.

Pour interpréter ces résultas, et en particulier les signes opposés de l'enthalpie libre d'isomérisation, nous avons été amené à proposer¹³, pour l'isomère β , une chélation entre l'oxygène fonctionnel et l'hydrogène le plus proche du cycle benzénique (Fig. 1).

Nous avons pensé que l'analyse des spectres de vibration des isomères isolés de cette oxime permettrait de confirmer l'hypothèses précédemment envisagée.

L'étude des vibrations de la benzaldoxime a déjà fait l'objet de plusieurs publications;^{2, 4-10} toutefois, les auteurs n'ont en général examiné que des régions très limitées à l'occasion de travaux sur des séries de composés voisins. Seuls Kahovec et Kohlrauch⁵ ont publié le spectre Raman des deux isomères pour un domaine assez étendu, mais leur attribution, limitée, consiste surtout à mettre en évidence les bandes d'absorption dues au groupement fonctionnel. Les travaux les plus récents sont ceux de Lüttke⁷ et surtout ceux de Hadzi⁴ qui permettent l'attribution des vibrations de déformation dans le plan de la molécule des groupements OH et CH, grâce à des "effets de dilution" et à l'étude de dérivés isotopiques pour lesquels un atome de deutérium a été substitué à l'atome d'hydrogène des groupements considérés.

L'étude expérimentale des spectres de vibrations restait cependant à compléter; et leur interprétation pouvait être facilitée par un calcul de modes normaux. Nous avons donc entrepris conjointement l'examen de ces deux aspects du problème.

FIG 1. Modèles utilisée pour le calcul des modes normaux de vibration de la benzaldoxime.

Constantes de forces de déformations (dans le plan)

[]]30* 0-341

¹29* 0-163

¹28* -0-502

1₂₇. 0.800

-0-107

¹25* -0107

~

RESULTATS

La benzaldoxime est constituée par 16 atomes; si l'on admet que la molécule ne possède qu'un plan de symétrie, son spectre provient théoriquement de 42 vibrations actives à la fois en infrarouge et en Raman: 29 vibrations, toutes polarisées en spectrométrie Raman, correspondent aux mouvements symétriques par rapport au plan de la molécule, 13 vibrations aux mouvements antisymétriques.

Les pourcentages de la répartition d'énergie potentiellee (PED), calculés à partir des modèles correspondant aux isomères α et β , sont indiqués dans les Tableaux I, II, III pour les mouvements symétriques et anti-symétriques par rapport au plan de la molécule.

Les fréquences théoriques et expérimentales, ainsi que leurs attributions, ont été rassemblées dans les Tableaux IV et V pour l'isomère α , dans le Tableau VI pour l'isomère β .

Enfin, dans le Tableau VII, nous avons comparé les vibrations de l'isomère β , perturbées par la chélation, aux vibrations correspondantes de l'isomére α .

DISCUSSION DES RESULTATS ET CONCLUSIONS

Une attribution des bandes observées a été proposée pour les vibrations de chaque isomère. Comme dans le cas des oximes simples déjà étudiées¹² au laboratoire, elle est essentiellement basée sur les données expérimentales (forme des bandes à l'état gazeux, effet de dilution sur les bandes correspondant aux vibrateurs perturbés par association intermoléculaire, effet isotopique sur les vibrateurs contenant un atome d'hydrogène, polarisation des bandes de diffusion Raman). ainsi que sur les résultats du calcul des modes normaux de vibration (analyse du PED). Nous avons également tenu compte d'une étude expérimentale³ des spectres du benzaldéhyde.

L'examen des Tableaux I, II et III donnant la répartition d'énergie potentielle selon les coordonées internes montre que, à l'exception des vibrations v OH et v CH pratiquement pures, toutes les autres sont fortement couplées: les vibrations 10 et 11, par exemple, ont toutes deux un caractère v(C=N) relativement important. En outre comme nous l'avions remarqué dans le cas des oximes aliphatiques¹², un certain nombre de vibrations fait intervenir des vibrateurs susceptibles d'être perturbés par "autoassociation". Nous avons pu observer expérimentalement que ces fréquences donnaient des couples de bandes "libres et associées ' aussi bien pour les vibrations habituellement perturbées (v OH, v C=N, v N-O, δ NOH, δ CNO) que pour des vibrations du cycle benzénique (vibrations 16.8, 9) et pour le mouvement de déformation de la liaison C-H aldéhydique (17).

Il n'est pas de notre propos de faire ici une analyse détaillée de chacune des vibrations, les Tableaux IV, V, VI étant relativement explicites; nous devons toutefois signaler que les fréquences de vibration des deux isomères sont relativement voisines; on observe en effet, sur le spectre d'un mélange de formes α et β , un recouvrement des bandes respectives de chacun des isomères.

Comme le montrent les résultats du calcul des modes normaux de vibration (Tableaux, I, II, III), les fréquenes les plus perturbées semblent être celles relatives aux mouvements antisymétriques par rapport au plan de la molécule et en particulier celles correspondant aux vibrations notées τ_1 (C— ϕ) et τ (C=N) dont la répartition d'énergie potentielle est nettement différente pour chaque isomère.

					NOSI	IERE 2 =	= MOUVE	MENT DA	NS LE PL	NN							
						Liaison	s						Ang	gles			
Fréquences calculées	Désignation	No.	НО	Q	C=N	C - \$	φ C=C	CH.	CH.	Koy HOy	(S	(S S	KĴ	Кñ	HCN	cycle CC	В СН
3646	НО	-	<u>8</u>														
3069	~	2							8								
3067	<pre> fuller </pre>	3							<u>98</u>								
3064		4							8								
3059		ŝ							86								
3058 3043) vCH.	9 6						97	001								
0681		- >0				90	51						4	80			18
1800	Ø^	6			r	,	8						- 11	~			8
1715	7 : - M-U- 	10			43	6	20			7			ŝ	6			0
1652	hr-in + va	11			12		33			1			4	m			32
1603	4	12			٢		50			-				1			37
1529	Φ	13					68		2	2			9	e			24
1430	, soh	14		9			7	2		8	9				9	-	e
1324	BCH.	15				S	6			4		ŝ	6	~	7		69
1294	vC- <i>ф</i>	16		-	Π	18	2			12	Ч		7	æ	e		0E
1144	BCH.	17		4	2	1	s			s	9	7	Ś	2	37	6	15
1078		18					30							5	÷		69
1057	SACH + vd	61				-	33							10	4	-	55
1035		2		7		-	38						7	01			44
1002		7 7		ŝ			So '							7			<u>ي</u>
216		32		8 -			ب ا			4	ø	4		5	-	6	- :
217	¢^ <	32		- •			C :							5			*
76		4 7 1		0		4	4 0				¢			30	m	7	m
610 \$77	\$βCH, + νφ	2 2		×			20 2				-			80			
PCS) 8.4	3 5		2			2 2				2 2	c		C,			
170 171		ŝ		r		2	e 1				2 2	~	с Г Ф	2			
240		98		-	0	Q	n				\$ '	1	- :	4			
156	SC=N	52									٢	55	13	Ξ	7	7	
Les pourcenta	ges italiques, corre	sponda	nt aux v:	aleurs le	s plus él	cvées. o	nt guidé	la désign	nation de	e la vibra	ation.						

Tableau I. Répartition d'énergie potentielle selun les coordonnées internes de la benzaldoxime

1865

ME	
- XO	
TIL	
JEN2	
- N	
DE	
NDS NDS	
LER	
8	
AN6	
ŝ	
8	
ខ្ម	
N	
SEL	
ELLE	2
ILL	4
OTE	
JE P	
ĒR	
ц Ц Ц	
NO	
TIT	
ÉPAI	
l. R	
ΠŊ	
BLEA	
T	

character	s carcanees						Liai	SODS								Angles					
avec lation	sans chélation	Désignation	°,	HO	N N	N U	9 	ິນ ພິພິ 	F C		÷.	(^b	۲S ۲	<u>ک</u>	K	ζž	2	CO Se CO	₿ CH	, filler	Chelatio H O
34.56	3646	HO 4	-	8		' 				l			{	ł				 		1	
3069	990E	~	7					-		8											
3066	3067	V CHar	~							86											
3061	3064		4					-		86											
3058	3059	v CHar	Ś							86											
3042**	3058	v CHar*	¢						Ŧ	7	8										0,5
3039	3041	V CHal	٢						86												
1894	1904	-	90			Ś	Ξ	47							-	7			12	~	
1792	1796	ه ،	ø			e		8											16		
1736	1737	v C=N + v¢	9			Ŧ	01	22					2			2	2	-	12		
1646	1647	v + vC=N	=			17		١£											32		
1587	1607		12			4		6				-							23	4	
1527	1533	*	=			2		72				2		~	s	7	e		2	ñ	
[4]6	1416	¢ ΟΗ	4		٢	4		-				81	2						٣		
1294	1316	₿ CHar	15				2	01				2		7	4	~	7		57	81	-
1276	1276	v C-¢	9		x 0	2	61	30				-	~	ę		%	1		51		
144	1147	₿ CHal	17		¢			÷					~			14	9 2	80	17	2	
1070	1082	_	18					90								4			52	17	~
1054	1054		6					3 2								30			58		
1017**	1601		ନ୍ଦ					ţ								6			21	21	-
973	1008	_	21					55								7			28	0	ŝ
926	927	~	ដ		9			8				e.	0	۴		٢	13	0	12		
805	<u>8</u>	B CHar + vNO	23		23			56					¢			"	Ś		18		
774	275	_	24		27		\$	8					2	01	¢	13					
693	692	49 + UN 9	25		4		15	53					16	4	4	8					
69	Ş	ی EG	26					ន								80					
477	114	s HCb	27				53	13					0		12	6 €					
376	376	5 C-++ + CNO	ង		s	\$		80					77		\$						
155**	<u>6</u>	S CHORN	2										Ξ	34	2	01		1			22

H. SAUVAITRE

TABLEAU III. REPARTITION D'ENFRCIE POTIENTIELLE SELON LES COURDONNEES INTERNES DE LA BENZALDOZIME	Mouvements hors du plan
---	-------------------------

			Isoi	nère a						lsomèi	re <i>β</i> (moo	dèle ave	c chélat	ion)			
No.	Fréquence calculée	Désignation	уСН_	уСН "	NO NO	rC≡N	τC-φ	τ¢ (C≡C)	Fréquence calcul éc	Désignation	уСН"	уСН"	rNO VOH		τCφ	τφ	tchel
-	1683	$\tau_1 \phi (+ \gamma CH_{at})$		\$) 	-	40	1681	τ ₁ φ		\$			-	40	ĺ
7	1317	$\tau_2 \phi (+ \gamma CH_n)$	2	59			s	20	1337	τ2Φ	7	59			\$	20	4
ę	6611	$\tau_{3}\phi(+\gamma CH_{n})$	4	64			s	21	1232	φε1	4	2			ŝ	20	-
4	925	yCH, *	55	21	10	-	10	ŝ	1034	yCH.	32	33	80	10	14	11	2
Ś	846	γ ₁ CH.	S	<u>56</u>					889	y, CH, (chel)		85					15
9	723	Y2CH		66	-				759	HON	œ	9	82				7
٢	702	уон	15	S	80				727	τ ϵ φ (chel)		40	9			35	17
80	645	τ,φ		60				40	721	γ2CH.,		66					-
6	469	τ ₅ φ		20				80	527	$\tau_1 C - \phi$							
										$(+\tau C=N)$	36	9	-	19	26	10	7
10	438	τ ₆ φ (+ τCφ)	s	14		-	35	45	475	τ _s φ		61			s	72	4
Π	354	τ,C−φ	7	10			40	45	435	τ ₆ φ	-	15		6		76	
12	250	rC=N		4		75	×	13	186	rC≡N							
										$(+ rC\phi)$		16		28	26	20	10
13	96	τ₂Cφ		2		13	70	15	130	$t_2C-\phi$		6			80	10	-
	réquences si	usceptibles d'être	modifié	s par la c	chélatio	ė											

			Attribution		HOM	vCH.	vCH.,	vCH∎i		γφ (CC)	vø + vC==N	τιφ	$vC=N+v\phi$		\ مە	40H	RCH	1, đ	VC=¢	harmonique $\begin{cases} 2 \times 041 \\ 3 \times 7 \end{cases}$	$r_3\phi$ $(z^{-1}, 4)$
64				Sym	,v	Ä	,¥	,¥	, A	A'	,	Α"	Ň	,A	Ä	Α.	, A		À,		۷.
BENZALDOXIMI	отіque		ce calcul éc	cm -1	3646	3069	3059) 3058 (3043	1890	1800	1715	1683	1652	1603	1529	1430	1324	1317	1292		1199
KE & DE LA I	Thé		Fréquen	No.		4 0 17	٥	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6	10	-	=	12	13	14	15	7	16	,	ا د
BRATION DE L'ISOMÉI		Raman	solide		Ю.П		3070 (10)	2997 (3)					1638 (7)	1605 (10)	1581 (1)	{1480 (1) 1445 (2)	1332 (1)	1323 (1)	1292 (1)		1212 (8)
RÉQUENCES DE VIE			solide		3300-3350	3090	3070	3030					Iodu		1580	1460		п.0.			1210
TABLEAU IV. I	rimental		ų	bande associée	3250						1690	0071	1038			1460			1305		
	Expé	Infrarouge	solutic	bande libre	3596	3088 (25)	3070 (27)	3032 (26)	1890	1803	(1) 001	1662 (2) 1628 (2)	(c) 0701	1603 (12)	1578 (15)	1397 (30)	1325 (10)	1315 (35)	1258 (160)	1279 (38)	(06) 9071
			gaz	(a)	3640 (10)	3090 (ep)	3070 (4)	3038 (3)				110001				1400 (3)			1258 (8)	1208 (3)	(c) 0071

1868

H. SAUVAITRE

BC-H _(a)	~		$\beta \beta CH_{H} + \nu \phi$		ON ⁴	yCH _(a)	¢Λ	yCH()	νφ (yCH _(w)	НОИ	BCH _(a)	τ ₄ φ],	BCH _(a) {	ô¢	τsφ	τ ₆ φ	τC-φ	<u>.</u>	$\delta CNO(+\nu C-\phi)$	rC=N	§C≡N	rC—ø
A,	~	, A	A'	, A	Ä	Α"	A'	Α"	۶.	Α"	Α"	,	Α"	, A	A.	Α"	Υ	Α"		,¥	٨"	×	Α"
1144	1078	1057	1035	1002	972	925	912	846	792	723	702	610	645	577	524	469	438	354		342	250	156	96
17	18	61	20	21	22	•	23	10	40	¢	٢	25	60	26	27	ø	10	11		28	12	29	13
1183 (4)			1034 (3)	1004 (7)		955 (1)	915	872 (2)		757	no.		645 (1)		515 (1)	n.o.	406 (1)	376 (1)		315 (2)	237 (3)	176 (2)	011
1175	~		71073		970	950	906 (tl)	867		752	069		645		510	460	403) 384	373					
1157?					696								645			460							
1174 (19)	1100 (16)	1073 (29)	1028 (18)	1000 (tí)	945	945	906 (II)	865 (151)	835 (tf)	752 (227)	690 (244)	670	641 (110)	620 (tl)	510 (89)	438 (41)	406 384 (47) 384 (47)	[376 3775 (47)		(315 (ep)	-		
					(T) 	(mi)		4		ပ	ပ				ပ								
1175 (u)	(1) 0011	1070 (tt)	1020 (tf)		955 (10)	945 (10)	905 (tí)	(1) 865) 835 (tf)	752 (7)	688 (6)		∫640 (4)	~~~	510 (2)								

Isomérisation de la benzaldoxime-II

1869

⁽a): structure de bande

Tableau V. Fréquences de diffusion Raman pour un mélange liquide d'isomères de la benzaldoxime
$(90\% de \alpha)$

	Fréques	nces		A
v(cm ⁻¹)	1	ρ		Attribution
n.o.			A'	vOH
3058	(10)	0.3	A'	vCHar
2996	(3)	0.5?	A'	vCH _{al}
1639	(7)	0.4	A′	$vC = N + v\phi$
1603	(10)	0-4)	• /	
1578	(2)	0.4	A	νφ
§1501	(1)	0.5?)		
<1473	(3)	A ()	• '	δOH
1210	{ <i>2</i> }	0.57)	A	1
1319	(1)	: 2	A	$\tau_2 \varphi$
1290	(1)	; 0.7	A	$\psi C - \varphi$
1211	(0) (4)	0.3		
1157	(7)	0.5	۸″	2 9
1033	(2) (A)	0.4	A()	••
1033	(4) (0)	< 0.1		$\delta CH_{ar} + v\phi$
947	(7)	201		»NO
915	(1)	. 0.72	<u>.</u>	CH
860	(3)	<0.2	Δ.	,∼⊷⊔ນ ນπ5
756	(3)	~02	A"	у с н
645	(1)	· ~ 0.1	Â'	RCH
622	(7)	0.7	Δ"	μωτ.(al) τ
510	(0.5)	2	Â'	ι 4 Ψ δ. 4
465	(0.5)	9	A"	υψ τ.φ
376	(7)	ሩቡ1	A'	SCNO
311	(1)	0.7	Δ"	τC
770	(0·5)	?	-	.ς φ
238	(0-5)	?		
2042	(1)	?		

	Expérim	iental				Th é oriq	uc
	Infrarouge		Raman	F	réquences ca	liculées	
solution (libre)	solution (associ će)	solide	solide	No.	sans chélation	avec chélation	Attribution
3594	3270	{3280 (ep) 3180 (m)		1	3646		A' vOH
3100		3100		$\begin{cases} 2\\ 3\\ 4 \end{cases}$	3069 3067 3064		$\begin{pmatrix} A' \\ A' \\ A' \\ A' \end{pmatrix}$ vCH _{ar}
3078		3076	3075	5	3059		A' vCH,
3064		3064	3062	6	3058	3050	A' vCH. (chel)
3032		3024	3050	7	3041		A' vCH(al)
1809				8	1904	1894	Α') νφ
1770				9	1796	(1792)	A' C = C
1680				10	1737		$A' v\phi + vC = N$
1656		1655 (ep)		1	1687	1681	$A^{\prime\prime} \tau_1 \phi$
1636	1650	1650	1646	11	1647		A' $vC=N+v\phi$
1582 (ep)	1600	1597	1597	12	1607	1587	A']
1577		1575	1575	13	1533	(1529)	A' { ^v ψ
1338	1466	1490		14	1416		Α΄ δΟΗ
1298				15	1316	1294	A' $\delta CH_{ar}(chel)$
1358		1368		2	1340	(1337)	Α΄΄ τ ₂ φ
1319	1351	1351	1350	16	1276		A' νC—φ
				3	1228	(1232)	$A'' t_3 \phi$
1184	1192 (ep)	1188	1185	17	1147	1070	A' $\beta C - H(al)$
1070		1078-1075		18	1082	1070	$\left. \begin{array}{c} A' \\ \delta CH_{u} + v\phi \end{array} \right.$
1021 (17)		1030	1020	19	1054		
1031 (17)		1030	1029	4	1034	1017	A ¹ yCH(al)
084 (6			1000	20	1031	1017	$\delta \delta CHar + v\phi$
907 (I) 027	034	044 034		21	027	9/3	A) A')
1886	9.07 807	944-934 805	904	22	927		$A_{A'}$ $vNO + v\phi$
837 (46)	846 (37)	848-855	850	23 5	850	890	A" "CHar(chel)
(057 (10)	040 (57)	764	0.70	24	9 775	887	
753 (103)		756		6	721		A'' = CHar
730 (48)		738	732	8	642	727	A" t.d chel
716		728		7	721		A" yOH
689		692		25	695		A' $\delta(\phi - C = N - O)$
619 (tf)			621	26	610		A' BCHal?
578 (60)	568	573	578	9	522		A" yCHal + $\tau C - N$
495 (tf)] 400		27	477		A' β CHal + δ C- ϕ
475 (tf)		{490		10	459	475	A'' $\tau_6 \phi$ (chel)
445		454		11	400	435	Α " τ C φ
382		404-418	321	28	377		-
			246	12	159	186	A' β CHal + δ C ϕ A" τ C=N
			181	20	130		A' $\delta C = N$
			••••	13	117	130	$A' C-\phi$

TABLEAU VI. Fréquences de vibration de l'isomère β de la benzaldoxime

	Isomère a			Isom	ère β			
Infrarouge	en solution	Théorique	Infrarouge	en solution	Théo	orique	A	Attribution
libre	associée		libre	associée	sans chélation	avec chélation		
3088		3067	3100		3067	3067		
3070		3058	∫3078		∫ 3058	3058	A'	vC—Har
3032		3043	<u>3064</u> 3032		(3058 3041	<u>3050</u> 3041		
1890		1890	1809		1909	1894		
1803		1800	1770		1796	1792	A'	νφ(C≕C)
1603		1603	1 <u>582</u>	1600	1607	1587		,
1100		1077	1076		1082	1070		
1073		1056	1031		1054	1054		
1028		1034	1000		1031	1017	A	o C $Har + v\phi$
1000		1005	984		1008	973		
641 (110)	645	645	<u>730</u> (48)	738	642	727	Α"	τ ₄ φ

TABLEAU VII. MISE EN ÉVIDENCE D'UNE CHÉLATION POUR L'ISOMERE β de la benzaldoxime

Les fréquences soulignées sont les plus perturbées par la chélation.

Légende des Tableaux IV à VII

n.o.: bande non observée à cette fréquence dans le spectre enregistré (ep): épaulement

Fréquences expérimentales à l'état solide et gazeux (IR ou Raman) (tf): intensité très faible

(7): intensité relative de 7/10 par rapport à la bande la plus intense

A: structure de bande à l'état gazeux de type A

```
s'réquences expérimentales en solution (IR ou Raman)
Solvants utilisés: CCl<sub>4</sub> de 1250 cm<sup>-1</sup> à 4000 cm<sup>-1</sup>
CS<sub>2</sub> de 700 cm<sup>-1</sup> à 1300 cm<sup>-1</sup>
heptane et cyclohexane de 250 cm<sup>-1</sup> à 750 cm<sup>-1</sup>
( ): intensité : intensité relative en Raman
: coefficient d'extinction molaire en IR
ρ: facteur de dépolarisation en Raman ρ = i<sub>4</sub>/l<sub>1</sub>
```

Attribution

A', A": classe de la symétrie

Numérotation des fréquences de vibration: les nombres non italiques correspondent aux vibrations symétriques et les nombres italiques aux vibrations anti-symètriques par rapport au plan de la molécule.

 $\mathcal{P}(H_{ar})$?: Inversion possible dans l'attribution proposée.

Malgré la grande similitude des spectres, il nous a été possible de repérer, pour chaque isomère, une bande d'absorption caractéristique du composé, bien isolée des autres bandes du spectre et suffisamment éloignée des bandes de l'autre isomére.

En outre, nous pensons avoir apporté une preuve expérimentale de la chélation proposée pour l'isomère β entre l'oxygène fonctionnel et l'hydrogène benzenique le plus proche.

Le calcul des modes normaux indique que cette chélation doit se traduire expérimentalement par une perturbation des vibrations mettant en jeu l'atome d'oxygène (v NO, $\delta \text{ NOH}$), de celles relatives à la liaison C—H ($v \text{ CH}_{ar}$; $\beta \text{ CH}_{ar}$) et des vibrations du cycle mettant en jeu l'atome de carbone de la liaison perturbée. Il est malaisé de tirer des conclusions de l'étude des premières vibrations car elles sont déjà fortement modifiées par la seule différence de géométrie entre les isomères. Par contre, la perturbation des autres types de vibrations est nettement observée; l'examen du Tableau VII montre en effet:

(a) une fréquence v CH (3064 cm⁻¹) individualisée, correspondant à la vibration de la liaison CH perturbée par chélation;

(b) une fréquence δ CH_{ar} nettement perturbée (passant de 1000 à 984 cm⁻¹) correspondant à la déformation de la liaison précédente;

(c) deux fréquences nettement perturbées, comme le prévoit le calcul, correspondant à une vibration symétrique $v\phi$ et à une vibration antisymétrique $\tau_4\phi$ du cycle par rapport au plan de la molécule.

PARTIE EXPERIMENETALE

Les spectres d'absorption infrarouge de chaue isomère de la benzaldoxime ont été enregitrés, pour l'état solide et l'état dissous, entre 250 cm⁻¹ et 4000 cm⁻¹. A l'état gazeux, seul l'isomère α été étudié entre 400 cm⁻¹ et 4000 cm⁻¹ car l'isomère β se transforme en forme α par chauffage. Le spectre d'un mélange liquide (90 % d'isomère α)¹² des deux isomères a été également obtenu.

Les spectres de diffusion Raman on été enrigistrés jusqu'à 3600 cm⁻¹ pour chaque isomère solide et pour un mélange liquide.

Nous avons obtenu en outre le spectre infrarouge d'un mélange liquide d'isomères O-deutériés.

Les isomères s'interconvertissant aisément, les enregistrements ont été effectués le plus rapidement possible et, pour chacun d'entre eux, un contrôle de purete^{*} a été réalisé. Signalons par ailleurs que la faible solubilité de l'isomère β a complique l'étude de cet isomère.

Méthode de calcul des modes normaux de vibration

Nous avons utilisé le programme de Schachtschneider¹⁵ basé sur la méthode de Wilson *et al.*¹⁰ Dans le système des coordonnées internes, l'équation séculaire prend la forme $GFL = 1\Lambda$ où Λ est la matrice diagonale des fréquences, L, la matrice des amplitudes relatives aux coordonnées internes, G et F les matrices carrées des éléments g(associés à l'énergie cinétique) et des constantes de forces.

Les éléments de la matrice G ont été calculés à partir des coordonnées cartésiennes et des masses des atomes après définition des coordonnées internes (Fig. 1).

La matrice F a été contruite dans le système VFF† à partir du champ de forces utilisé par Raymond¹¹ pour l'étude du benzène et de celui que nous avons ajusté¹² sur le spectre expérimentale de la formaldoxine à l'état gazeux (Fig 2).

Cette méthode de calcul permet de connaitre la répartition d'energie potentielle (PED[‡]) pour chaque mode de vibration.

Les calculs ont été effectués pour trois modèles (Fig. 1) correspondant à l'isomère α , à l'isomère β sans chélation et à l'isomère β en admettant une chélation entre l'oxygène du groupement hydroxyimino et le

* Les vibrations à 510 cm⁻¹ pour l'isomère α et à 578 cm⁻¹ pour l'isomère β , bien isolées, ont été utilisées pour le contrôle de pureté ainsi que pour le dosage des isomères en présence.^{12, 14}

[†] Valance force field

[‡] Potential energy distribution

plus proche atome d'hydrogène situé sur le cycle benzénique. Les modèles utilisés ne possèdent qu'un plan de symétrie et appartiennent donc au groupe de symétrie C_s.

Remerciements—L'auteur tient à exprimer sa reconnaissance à M. le Professeur J. Deschamps dont les conseils et l'aide constante lui ont été précieux. Il remercie également MM. M. Chaillet et J. Raymond pour les discussions fructueuses qu'il a eues avec eux.

Les calculs ont été effectués sur l'ordinateur I.B.M. 7044 de l'Institut de Calcul Numérique de la Faculté des Sciences de Toulouse; l'auteur remercie M. le Doyen Durand de lui en avoir facilité l'accès.

BIBLIOGRAPHIE

- ¹ P. Aurisset, Diplôme d'Etudes Supérieures, Université de Pau (1968)
- ² S. Califano et W. Lüttke, Z. Phys. Chem. 5, 240 (1955)
- ³ C. Garrigou-Lagrange, N. Claverie, J. M. Lebas et M. L. Josien, J. Chim. Phys. 58, 559 (1961)
- ⁴ D. Hadzi et L. Premu, Spectrochim. Acta 23A, 35 (1967)
- ⁵ L. Kahovec et K. W. F. Kohlrausch, Monatsh. 83, 614 (1952)
- ⁶ R. J. W. Le Fevre et R. K. Pierens, Austral. J. Chem. 14, 512 (1961)
- ⁷ W. Lüttke, Annalen 668, 184 (1963)
- ⁸ F. Mathis, C.R. Acad. Sci., Paris 232, 505 (1951)
- ⁹ A. Palm et H. Werbin, Canad. J. Chem. 31, 1004 (1953)
- ¹⁰ A. Palm et H. Werbin, *Ibid.* 32, 858 (1954)
- ¹¹ J. Raymond, Thèse de 3ème Cycle, Pau (1969)
- 12 H. Sauvaitre, Thèse, Pau (1969)
- ¹³ H. Sauvaitre, Tetrahedron 26, 1647 (1970)
- 14 H. Sauvaitre, à paraître-
- ¹⁵ J. H. Schachtschneider, Shell development Company, Project No. 31450, Technical reports No. 57-65 et 231-64 (1964)
- ¹⁶ E. B. Wilson Jr., J. C. Decius et P. C. Cross, Molecular vibrations, McGraw Hill, New York (1955)